ECTS
10Undervisningsform
ForelæsningEksamensform
MundtligUndervisningssprog
EngelskNiveau
KandidatSted
Aarhus
Kursusindhold
Kvalifikationsbeskrivelse
Objectives of the course:
Geometric structures such as metrics or complex structures are important objects, but it is often hard to find examples that solve particular equations. Adding symmetry to problems can provide a dramatic simplification, and considering problems where the underlying space is a group reduces many questions to those of (multi-) linear algebra. The aim of this course is to introduce geometry on matrix groups from the linear algebra perspective. This will then be used to provide a number of concrete constructions of Einstein metrics and to give classifications for other geometric structures, particularly in low dimensions.
Learning outcomes and competences:
At the end of the course the students should be able to:
- reproduce key results for geometric structures on matrix groups and give rigorous and detailed proofs of them,
- apply the basic techniques and concepts of the course to concrete examples and use them to show how classification results may be derived,
- combine concepts from linear algebra and geometry to work with invariant geometric structures defined via tensors and differential forms,
- relate invariant concepts on matrix groups to geometric objects on submanifolds of Euclidean space, and
- given an oral presentation of some topic from the course.
Øvrig information
Course homepage:
http://bb.au.dk/
Blackboard for students, - get help here:
http://studerende.au.dk/en/selfservice/blackboard/
- ECTS
- 10
- Niveau
- Kandidat
- Semester
- Spring 2019
- Faglige forudsætninger
- Geometry (recommended)
- Undervisningssprog
- Engelsk
- Timer - uge - periode
- 5 hours per week.
- Kursustype
- Ordinær
- Primær uddannelse
- Kandidatuddannelsen i matematik
- Relaterede uddannelser
- Bacheloruddannelsen i matematik, Kandidatuddannelsen i matematik-økonomi, Bacheloruddannelsen i matematik-økonomi, Kandidatuddannelsen i statistik, Bachelortilvalget i matematik, Kandidattilvalget i matematik
- Institut
- Institut for Matematik
- Fakultet
- Natural Sciences
- Sted
- Aarhus
- Stads UVA-kode
Undervisning
- Undervisningsform
- Forelæsning
- Underviser
- Kursusansvarlig
- Andrew Francis Swann, swann@math.au.dk
Kommentar til undervisningsform
Litteratur
- T. B. Madsen, A. F. Swann, Geometry on groups, available from course homepage.
Additional material from:
- W. Fulton and J. Harris, Representation theory: a first course, Graduate Texts in Mathematics vol. 129, Springer-Verlag, 1991.
- A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, vol. 10, Springer-Verlag, 1987.
Eksamen
- Eksamensform
- Mundtlig
- Censurform
- intern censur
- Bedømmelse
- 7-trinsskala
- Hjælpemidler
- Anviste
- Forberedelsestid
- 30 minutter
- Varighed
- 25 minutter
Forudsætninger for deltagelse
Bemærkninger
The evaluation will be based on an oral examination lasting about 25 minutes, after 30 minutes preparation with the use of all usual aids.